• 사이트 내 전체검색
    전체검색 닫기
HOME Research Professor People Publication News Teaching Contact Us

Publication


2016 Design optimization of LiNi0.6Co0.2Mn0.2O2/graphite lithium-ion cells …

페이지 정보

profile_image
작성자 연세대
댓글 0건 조회 105회 작성일 24-04-17 22:15

본문

  • Abstract

    LiNi0.6Co0.2Mn0.2O2 cathodes of different thicknesses and porosities are prepared and tested, in order to optimize the design of lithium-ion cells. A mathematical model for simulating multiple types of particles with different contact resistances in a single electrode is adopted to study the effects of the different cathode thicknesses and porosities on lithium-ion transport using the nonlinear least squares technique. The model is used to optimize the design of LiNi0.6Co0.2Mn0.2O2/graphite lithium-ion cells by employing it to generate a number of Ragone plots. The cells are optimized for cathode porosity and thickness, while the anode porosity, anode-to-cathode capacity ratio, thickness and porosity of separator, and electrolyte salt concentration are held constant. Optimization is performed for discharge times ranging from 10 h to 5 min. Using the Levenberg-Marquardt method as a fitting technique, accounting for multiple particles with different contact resistances, and employing a rate-dependent solid-phase diffusion coefficient results in there being good agreement between the simulated and experimentally determined discharge curves. The optimized parameters obtained from this study should serve as a guide for the battery industry as well as for researchers for determining the optimal cell design for different applications.

  • 댓글목록

    등록된 댓글이 없습니다.


    사이트 정보

    연세대학교 DIGITAL TWIN BATTERY LABORATORY

    • 주소 : 서울특별시 서대문구 연세로50, 연세대학교 제1공학관 A155호
    • TEL : +82-2-2123-7794
    • FAX : +82-2-312-6401

    Copyright (C) 2024 YonseiUniversity. All rights reserved. Designed By (주)드림위드컴퍼니