2017 Enhancing the Cycling Stability of Sodium Metal Electrodes by Building…
페이지 정보

본문
Abstract

Owing to the natural abundance of sodium resources and their low price, next-generation batteries employing an Na metal anode, such as Na–O2 and Na–S systems, have attracted a great deal of interest. However, the poor reversibility of an Na metal electrode during repeated electrochemical plating and stripping is a major obstacle to realizing rechargeable sodium metal batteries. It mainly originates from Na dendrite formation and exhaustive electrolyte decomposition due to the high reactivity of Na metal. Herein, we report a free-standing composite protective layer (FCPL) for enhancing the reversibility of an Na metal electrode by mechanically suppressing Na dendritic growth and mitigating the electrolyte decomposition. A systematic variation of the liquid electrolyte uptake of FCPL verifies the existence of a critical shear modulus for suppressing Na dendrite growth, being in good agreement with a linear elastic theory, and emphasizes the importance of the ionic conductivity of FCPL for attaining uniform Na plating and stripping. The Na–Na symmetric cell with an optimized FCPL exhibits a cycle life two times longer than that of a bare Na electrode.
관련링크
- 이전글Effects of an Integrated Separator/Electrode Assembly on Enhanced Thermal Stability and Rate Capability of Lithium-Ion Batteries 24.04.17
- 다음글A Flame-Retardant Composite Polymer Electrolyte for Lithium-Ion Polymer Batteries 24.04.17
댓글목록
등록된 댓글이 없습니다.