• 사이트 내 전체검색
    전체검색 닫기
HOME Research Professor People Publication News Teaching Contact Us

Publication


2022 Statistical and Computational Analysis for State-of-Health and Heat Ge…

페이지 정보

profile_image
작성자 연세대
댓글 0건 조회 78회 작성일 24-04-17 23:22

본문

  • Abstract

    The heat management of lithium-ion cells under ceaseless high-current operation plays a pivotal role in preventing an internal short-circuit, which is generally caused by separator meltdown at high temperatures and rapid cell deterioration. However, the simple specification sheets provided by battery manufacturers do not provide explanations nor supporting data on why or how permitted C-rates for charging or discharging at different temperatures can be guaranteed. Thus, the long-term degradation behavior of commercial 18650 cylindrical lithium-ion cells (LiNi0.8Co0.15Al0.05O2/graphite, 2.85 Ah) is systematically and statistically studied to determine the key degradation factors. Specifically, the capacity and power retention as well as the temperature changes of each cylindrical cell are gathered during 1,000 cycles at three C-rates, 0.5C, 1C, and 2C, for both charging and discharging (i.e., nine cases in total). The analysis of variance method shows that the capacity degradation is mainly governed by the charging C-rate, while power degradation and cell temperature behavior are affected by both the charging and discharging C-rates. Also, a thermo-electrochemical model is used to predict how quickly the cells reached the critical temperature under catastrophic conditions, like an adiabatic condition. Thus, this systematic approach can be an indispensable to ensuring the reliability of lithium-ion cells.

    Graphical abstract

    Image 1
  • 댓글목록

    등록된 댓글이 없습니다.


    사이트 정보

    연세대학교 DIGITAL TWIN BATTERY LABORATORY

    • 주소 : 서울특별시 서대문구 연세로50, 연세대학교 제1공학관 A155호
    • TEL : +82-2-2123-7794
    • FAX : +82-2-312-6401

    Copyright (C) 2024 YonseiUniversity. All rights reserved. Designed By (주)드림위드컴퍼니