• 사이트 내 전체검색
    전체검색 닫기
HOME Research Professor People Publication News Teaching Contact Us

Publication


2022 Electrolyte-free graphite electrode with enhanced interfacial conducti…

페이지 정보

profile_image
작성자 연세대
댓글 0건 조회 76회 작성일 24-04-17 23:26

본문

  • Abstract

    Electrodes supported by conductive binders are expected to outperform ones with inert binders that potentially disturb electronic/ionic contacts at interfaces. Unlike electron-conductive binders, the employment of Li+-conductive binders has attracted relatively little attention due to the liquid electrolyte (LE)-impregnated electrode configuration in the conventional lithium-ion batteries (LIBs). Herein, an all-solid-state electrolyte-free electrode where electrolyte components are completely excluded is introduced as a new tactical electrode construction to evaluate the effectiveness of the Li+-conductive binder on enhancing the interfacial conduction, ultimately leading to high-performance all-solid-state batteries (ASSBs). Conductive lithium carboxymethyl cellulose (Li-CMC) is prepared through an optimized two-step cation-exchange reaction without physical degradation. The electrolyte-free graphite electrode employing Li-CMC as the binder shows strikingly improved areal and volumetric capacity of 1.46 mAh cm−2 and 490 mAh cm−3 at a high current rate (1.91 mA cm−2) and 60 °C which are far superior to those (1.07 mAh cm−2 and 356.7 mAh cm−3) using Na-CMC. Moreover, systematic monitoring of the lithiation dynamics inside the electrolyte-free electrode clarifies that the interfacial Li+ conduction is greatly promoted in the Li-CMC electrode. Complementary analysis from in-depth electrochemical measurements and multiscale simulations verifies that serious internal resistance from impeded interparticle diffusion by inert binders can be substantially mitigated using Li-CMC.

  • 댓글목록

    등록된 댓글이 없습니다.


    사이트 정보

    연세대학교 DIGITAL TWIN BATTERY LABORATORY

    • 주소 : 서울특별시 서대문구 연세로50, 연세대학교 제1공학관 A155호
    • TEL : +82-2-2123-7794
    • FAX : +82-2-312-6401

    Copyright (C) 2024 YonseiUniversity. All rights reserved. Designed By (주)드림위드컴퍼니