• 사이트 내 전체검색
    전체검색 닫기
HOME Research Professor People Publication News Teaching Contact Us

Publication


2022 Dynamic Ionic Transport Actuated by Nanospinbar-Dispersed Colloidal El…

페이지 정보

profile_image
작성자 연세대
댓글 0건 조회 87회 작성일 24-04-17 23:27

본문

  • Abstract

    Inhibiting uneven dendritic Li electroplating is crucial for the safe and stable cycling of Li metal batteries (LMBs). Homogeneous and fast Li+ transport towards the Li surface is required for uniform and dendrite-free deposition. However, the traditional ionic transport of static liquid electrolytes involving electromigration and molecular diffusion can trigger a greater disparity in the Li concentration over the Li surface, leading to irregular dendrite growth. Here, a convective Li+ transfer for suppressing dendrite growth through magnetic nanospinbar (NSB)-dispersed colloidal electrolytes is presented. An ultrahigh-aspect-ratio NSB consisting of a paramagnetic Fe3O4 nanoparticle array and silica outer coating is synthesized. Manipulating the external electromagnetic force can remotely control the rotation of individual NSBs without dispersion failure, thereby generating mesoscale turbulence inside the cells. Regardless of the electrolyte composition, rotating the NSB can reduce the Li+ diffusion layer thickness from the bulk and evenly redistribute the Li+ flux over the Li surface, thereby suppressing Li dendrite growth. The NSB-dispersed electrolyte with advanced salt/solvent compositions demonstrates stable cycling of LMBs over 600 cycles with 70% capacity retention, thereby outperforming the NSB-free cell.

  • 댓글목록

    등록된 댓글이 없습니다.


    사이트 정보

    연세대학교 DIGITAL TWIN BATTERY LABORATORY

    • 주소 : 서울특별시 서대문구 연세로50, 연세대학교 제1공학관 A155호
    • TEL : +82-2-2123-7794
    • FAX : +82-2-312-6401

    Copyright (C) 2024 YonseiUniversity. All rights reserved. Designed By (주)드림위드컴퍼니