• 사이트 내 전체검색
    전체검색 닫기
HOME Research Professor People Publication News Teaching Contact Us

Publication


2023 Digital-Twin-Driven Diagnostics of Crack Propagation in a Single LiNi0…

페이지 정보

profile_image
작성자 연세대
댓글 0건 조회 112회 작성일 24-04-17 23:40

본문

  • Abstract

    Crack propagation has been extensively spotlighted as a main reason for the degradation of secondary-particle-type active materials, including LiNixMnyCo1−xyO2 (NMC). Numerous experimental analyses and 3D-modeling-based investigations have been conducted to unravel this complicated phenomenon, especially for nickel-rich NMCs, which experience substantial crack propagation during high-voltage, high-temperature, or high-depth-of-discharge operations. To fundamentally clarify this unavoidable degradation factor and permit its suppression, a digital-twin-guided electro–chemo–mechanical (ECM) model of a single few-micrometer-sized LiNi0.7Mn0.15Co0.15O2 (NMC711) particle is developed in this study using a 3D reconstruction technique. Because the digital twin technique replicates a real pore-containing NMC711 secondary particle, this digital-twin electrochemical model simulates voltage profiles even at 8C-rate within an error of 0.48% by fitting two key parameters: diffusion coefficient and exchange current density. The digital-twin-based ECM model is developed based on the verified electrochemical parameters and mechanical properties such as lithium-induced strain from axis lattice parameters and stress–strain curve measured by nanoindentation. Using this model, the electrochemical-reaction-induced mechanical properties including strain, stress, and strain energy density are also visualized in operando in a single NMC711 particle. Finally, the advanced operando ECM analysis allows for the diagnosis of crack formation, highlighting the effectiveness of this platform in elucidating crack formation in active materials.

  • 댓글목록

    등록된 댓글이 없습니다.


    사이트 정보

    연세대학교 DIGITAL TWIN BATTERY LABORATORY

    • 주소 : 서울특별시 서대문구 연세로50, 연세대학교 제1공학관 A155호
    • TEL : +82-2-2123-7794
    • FAX : +82-2-312-6401

    Copyright (C) 2024 YonseiUniversity. All rights reserved. Designed By (주)드림위드컴퍼니