• 사이트 내 전체검색
    전체검색 닫기
HOME Research Professor People Publication News Teaching Contact Us

Publication


2023 Unraveling the Significance of Li+/e-/O2 Phase Boundaries with a 3D-Pa…

페이지 정보

profile_image
작성자 연세대
댓글 0건 조회 78회 작성일 24-04-17 23:43

본문

  • Abstract

    The reaction kinetics at a triple-phase boundary (TPB) involving Li+, e, and O2 dominate their electrochemical performances in Li–O2 batteries. Early studies on catalytic activities at Li+/e/O2 interfaces have enabled great progress in energy efficiency; however, localized TPBs within the cathode hamper innovations in battery performance toward commercialization. Here, the effects of homogenized TPBs on the reaction kinetics in air cathodes with structurally designed pore networks in terms of pore size, interconnectivity, and orderliness are explored. The diffusion fluxes of reactants are visualized by modeling, and the simulated map reveals evenly distributed reaction areas within the periodic open structure. The 3D air cathode provides highly active, homogeneous TPBs over a real electrode scale, thus simultaneously achieving large discharge capacity, unprecedented energy efficiency, and long cyclability via mechanical/electrochemical stress relaxation. Homogeneous TPBs by cathode structural engineering provide a new strategy for improving the reaction kinetics beyond controlling the intrinsic properties of the materials.

  • 댓글목록

    등록된 댓글이 없습니다.


    사이트 정보

    연세대학교 DIGITAL TWIN BATTERY LABORATORY

    • 주소 : 서울특별시 서대문구 연세로50, 연세대학교 제1공학관 A155호
    • TEL : +82-2-2123-7794
    • FAX : +82-2-312-6401

    Copyright (C) 2024 YonseiUniversity. All rights reserved. Designed By (주)드림위드컴퍼니