• 사이트 내 전체검색
    전체검색 닫기
HOME Research Professor People Publication News Teaching Contact Us

Publication


2024 Thermal stability analysis of nitrile additives in LiFSI for lithium-i…

페이지 정보

profile_image
작성자 연세대
댓글 0건 조회 147회 작성일 24-04-17 23:54

본문

  • Abstract

    Although lithium-ion batteries (LIBs) are extensively used as secondary storage energy devices, they also pose a significant fire and explosion hazard. Subsequently, thermal stability studies for LiPF6- and LiFSI-type electrolytes have been conducted extensively. However, the thermal characteristics of these electrolytes with thermally stable additives in a full cell assembly have yet to be explored. This study presents a comprehensive accelerating rate calorimetry (ARC) study. First, 1.2-Ah cells were prepared using a control commercial LiPF6 electrolyte and LiFSI with a specific succinonitrile additive and ethyl-methyl carbonate as a thermally stable electrolyte additive. The kinetic parameters involved in heat generation and their effects on the thermal properties of the ARC module were analyzed from the heat-wait-seek (HWS), self-heating (SH), and thermal runaway (TR) stages. The results indicate that the addition of a succinonitrile additive to the LiFSI electrolyte lowers the decomposition temperatures of the solid electrolyte interface (SEI) owing to polymerization with Li at the anode, while simultaneously increasing the activation energy of reaction temperatures at SEI between the separator and the electrolyte. The maximum thermal-runaway temperature decreased from 417 °C (ΔH = 5.26 kJ) (LiPF6) to 285 °C (ΔH = 2.068 kJ) (LiFSI + succinonitrile). This study provides key insights to the thermal characteristics of LiPF6 and LiFSI during the self-heating and thermal runaway stages and indicates a practical method for achieving thermally stable LIBs.

  • 댓글목록

    등록된 댓글이 없습니다.


    사이트 정보

    연세대학교 DIGITAL TWIN BATTERY LABORATORY

    • 주소 : 서울특별시 서대문구 연세로50, 연세대학교 제1공학관 A155호
    • TEL : +82-2-2123-7794
    • FAX : +82-2-312-6401

    Copyright (C) 2024 YonseiUniversity. All rights reserved. Designed By (주)드림위드컴퍼니